On the Constructive Content of Proofs
نویسنده
چکیده
This thesis aims at exploring the scopes and limits of techniques for extracting programs from proofs. We focus on constructive theories of inductive definitions and classical systems allowing choice principles. Special emphasis is put on optimizations that allow for the extraction of realistic programs. Our main field of application is infinitary combinatorics. Higman’s Lemma, having an elegant non-constructive proof due to Nash-Williams, constitutes an interesting case for the problem of discovering the constructive content behind a classical proof. We give two distinct solutions to this problem. First, we present a proof of Higman’s Lemma for an arbitrary alphabet in a theory of inductive definitions. This proof may be considered as a constructive counterpart to Nash-Williams’ minimal-bad-sequence proof. Secondly, using a refined A-translation method, we directly transform the classical proof into a constructive one and extract a program. The crucial point in the latter is that we do not need to avoid the axiom of classical dependent choice but directly assign a realizer to its translation. A generalization of Higman’s Lemma is Kruskal’s Theorem. We present a constructive proof of Kruskal’s Theorem that is completely formalized in a theory of inductive definitions. As a practical part, we show that these methods can be carried out in an interactive theorem prover. Both approaches to Higman’s Lemma have been implemented in Minlog.
منابع مشابه
The Constructive Content of Nonstandard Measure Existence Proofs - Is There Any?
Some examples are given which cast some light on such questions as: What (if any) constructive sense can be made out of typical nonstandard measure existence results? Can NSA give any insight into constructive measure
متن کاملGlivenko sequent classes in the light of structural proof theory
In 1968, Orevkov presented proofs of conservativity of classical over intuitionistic and minimal predicate logic with equality for seven classes of sequents, what are known as Glivenko classes. The proofs of these results, important in the literature on the constructive content of classical theories, have remained somehow cryptic. In this paper, direct proofs for more general extensions are giv...
متن کاملProof-theoretic aspects of obtaining a constructive version of the mean ergodic theorem
Proof-theoretic aspects of obtaining a constructive version of the mean ergodic theorem – p. 1/27 Introduction 'Proof mining' is the subfield of mathematical logic that is concerned with the extraction of additional information from proofs in mathematics and computer science. G. Kreisel: What more do we know if we have proved a theorem by restricted means other than if we merely know the theore...
متن کاملOn metric spaces induced by fuzzy metric spaces
For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm, we present a method to construct a metric on a fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space. Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...
متن کاملLower Bounds on van der Waerden Numbers: Randomized- and Deterministic-Constructive
The van der Waerden number W (k, 2) is the smallest integer n such that every 2-coloring of 1 to n has a monochromatic arithmetic progression of length k. The existence of such an n for any k is due to van der Waerden but known upper bounds on W (k, 2) are enormous. Much effort was put into developing lower bounds on W (k, 2). Most of these lower bound proofs employ the probabilistic method oft...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003